Ta có: \(f\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a\cdot2^2+2b+c=4a+2b+c\\f\left(-5\right)=a\cdot\left(-5\right)^2-5b+c=25a-5b+c\end{matrix}\right.\)
\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=\left(4a+2b+c\right)\left(25a-5b+c\right)\)
Lại có:\(25a-5b+c=29a+2c-c-4a-5b\)
\(=3b-c-4a-5b=-2b-c-4a=-\left(4a+2b+c\right)\)
\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=-\left(4a+2b+c\right)\left(4a+2b+c\right)\)
\(=-\left(4a+2b+c\right)^2\le0\forall a,b,c\)
=> Q(2)=a2^2+2b+c=4a+2b+c
Q(-1)=a(-1)^2+(-1)b+c=a-b+c
Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c
=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c
Nhầm đây mới là câu trả lời:
Ta có:Q(x)=ax2+bx+x
=>Q(2)=a2^2+2b+c=4a+2b+c
Q(-1)=a(-1)^2+(-1)b+c=a-b+c
Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c
=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c