Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang

cho đa thức \(f_{\left(x\right)}=ax^2+bx+c\) ,biết rằng \(29a+2c=3b\) .

Chứng minh rằng : \(f_{\left(2\right)}.f_{\left(-5\right)}\le0\)

Lightning Farron
6 tháng 5 2017 lúc 18:48

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=a\cdot2^2+2b+c=4a+2b+c\\f\left(-5\right)=a\cdot\left(-5\right)^2-5b+c=25a-5b+c\end{matrix}\right.\)

\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=\left(4a+2b+c\right)\left(25a-5b+c\right)\)

Lại có:\(25a-5b+c=29a+2c-c-4a-5b\)

\(=3b-c-4a-5b=-2b-c-4a=-\left(4a+2b+c\right)\)

\(\Rightarrow f\left(2\right)\cdot f\left(-5\right)=-\left(4a+2b+c\right)\left(4a+2b+c\right)\)

\(=-\left(4a+2b+c\right)^2\le0\forall a,b,c\)

Đạt Trần
7 tháng 5 2017 lúc 14:21

=> Q(2)=a2^2+2b+c=4a+2b+c

Q(-1)=a(-1)^2+(-1)b+c=a-b+c

Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c

=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c

Đạt Trần
7 tháng 5 2017 lúc 14:26

Nhầm đây mới là câu trả lời:

Ta có:Q(x)=ax2+bx+x

=>Q(2)=a2^2+2b+c=4a+2b+c

Q(-1)=a(-1)^2+(-1)b+c=a-b+c

Ta có: 4a+2b+c=5a+b+2c-a+b-c=0-a+b-c=-a+b-c

=>Q(2).Q(-1)=(4a+2b+c).(a-b+c)=(-a+b-c).(a-b+c)=-(a-b+c).(a-b+c)≤ 0 với mọi a,b,c


Các câu hỏi tương tự
Trang
Xem chi tiết
Nguyễn Phan Như Thuận
Xem chi tiết
Something Just Like This
Xem chi tiết
nhok hanahmoon
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
nhok hanahmoon
Xem chi tiết
Something Just Like This
Xem chi tiết
Yến Nhi
Xem chi tiết
Sương Đặng
Xem chi tiết