Ta có: sin2α + cos2α = 1
Suy ra: sin2α = 1 – cos2α = 1 – (0,8)2 = 1 – 0,64 = 0,36
Vì sin α > 0 nên sin α = √0,36 = 0,6
Suy ra: tg α = sinα/cosα = 0,6/0,8 = 3/4 = 0,75
cotg α = 1/tgα = 1/0,75 = 1,3333
Ta có: sin2α + cos2α = 1
Suy ra: sin2α = 1 – cos2α = 1 – (0,8)2 = 1 – 0,64 = 0,36
Vì sin α > 0 nên sin α = √0,36 = 0,6
Suy ra: tg α = sinα/cosα = 0,6/0,8 = 3/4 = 0,75
cotg α = 1/tgα = 1/0,75 = 1,3333
Hãy tìm \(\sin\alpha,\cos\alpha\) (làm tròn đến chữ số thập phân thứ tư) nếu biết :
a) \(tg\alpha=\dfrac{1}{3}\)
b) \(cotg\alpha=\dfrac{3}{4}\)
Cho \(\cos\alpha=\dfrac{3}{4}\). Hãy tìm \(\sin\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Cho \(\sin\alpha=\dfrac{1}{2}\). Hãy tìm \(\cos\alpha,tg\alpha,cotg\alpha;\left(0^0< \alpha< 90^0\right)\) ?
Bài 1: Tìm Sin \(\alpha\), Cos \(\alpha\) , biết Tg \(\alpha\) = \(\dfrac{3}{4};cotg\alpha=\dfrac{5}{12}\)
Bài 2 : Cho Sin \(\alpha\) = \(\dfrac{7}{25}\) . Tìm Cos \(\alpha\) , Tg \(\alpha\) và Cotg \(\alpha\)
Sử dụng định nghĩa các tỉ số lượng giác của một góc nhọn để chứng minh rằng : Với góc nhọn \(\alpha\) tùy ý, ta có :
a) \(tg\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(cotg\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)
\(tg\alpha.cotg\alpha=1\)
b) \(\sin^2\alpha+\cos^2\alpha=1\)
Gợi ý : Sử dụng định lí Pytago
Chứng minh với mọi góc nhọn \(\alpha\) , ta có
\(cotg^2\) \(\alpha\) \(tg^2\) \(\alpha\) + \(2\sin\alpha\) \(\cos\alpha\) = \(\left(\sin\alpha+\cos\alpha\right)^2\)
Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
chứng minh với góc nhọn \(\alpha\) túy ý có;
\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
cotg\(\alpha\)=\(\frac{\cos\alpha}{sin\alpha}\)
\(\tan\alpha\) . cotg \(\alpha\)=1
\(\sin^2\alpha+\cos^2\alpha=1\)
1. Cho △ABC có góc B=60, c=4cm, a=8cm.
Giải ΔABC. Tính SABC
2. Cho Cosα=\(\dfrac{2}{3}\)
Tìm α
Tính sinα, tgα, cotgα