Bài 6. Cấp số cộng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d

Để tính tổng của n số hạng đầu

                                        \({S_n} = {u_1} + {u_2} +  \ldots  + {u_{n - 1}} + {u_n}\)

Hãy lần lượt thực hiện các yêu cầu sau:

a) Biểu diễn mỗi số hạng trong tổng \({S_n}\) theo số hạng đầu \({u_n}\) và công sai d

b) Viết \({S_n}\) theo thứ tự ngược lại: \({S_n} = {u_n} + {u_{n - 1}} +  \ldots  + {u_2} + {u_1}\) và sử dụng kết quả ở phần a) để biểu diễn mỗi số hạng trong tổng này theo \({u_1}\) và d

c) Cộng từng vế hai đẳng thức nhận được ở a), b) để tính \({S_n}\)theo \({u_1}\) và d

Hà Quang Minh
21 tháng 9 2023 lúc 23:28

a) \({u_2} = {u_1} + d\)

\({u_3} = {u_1} + 2d\)

\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)

\({u_n} = {u_1} + \left( {n - 1} \right)d\)

\({S_n} = {u_1} + {u_1} + 2d +  \ldots  + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)

b) \({S_n} = {u_n} + {u_{n - 1}} +  \ldots  + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1} + d + {u_1}\)

c) \(2{S_n} = \left( {{u_1} + {u_1} + d +  \ldots  + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d +  \ldots  + {u_1}} \right)\).

\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)

\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết