Đặt \(P=xyz\le\dfrac{1}{4}\left(x+y\right)^2z=\dfrac{1}{4}\left(x+y\right)^2\left(2016-x-y\right)\)
Do \(\left\{{}\begin{matrix}x\ge2\\y\ge9\\z\ge1951\\x+y=2016-z\end{matrix}\right.\) \(\Rightarrow11\le x+y\le65\)
Đặt \(x+y=a\Rightarrow11\le a\le65\)
\(4P\le a^2\left(2016-a\right)=-a^3+2016a^2-8242975+8242975\)
\(4P\le\left(65-a\right)\left[\left(a^2-65^2\right)-1951\left(a-11\right)-144051\right]+8242975\le8242975\)
\(\Rightarrow P\le\dfrac{8242975}{4}\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=y=\dfrac{65}{2}\\z=1951\end{matrix}\right.\)
Áp dụng BĐT Cô-si với ba số x,y,z không âm :
\(\dfrac{x+y+z}{3}\ge\sqrt[3]{xyz}\\ \Rightarrow\dfrac{2016}{3}= 672\ge\sqrt[3]{xyz}\\ \Leftrightarrow xyz \le(672)^3\\ \)
Dấu = xảy ra khi x = y = z = 672
Vậy GTLN của xyz là 6723 khi x = y = z = 672