Violympic toán 9

ĐỖ THỊ THANH HẬU

Cho các số thực ko âm x,y,z thỏa mãn x+y+z=3

Chứng minh rằng \(x^2+y^2+z^2+xyz\ge4\)

tthnew
7 tháng 7 2019 lúc 8:37

Em thử nhá! Em nhớ là em có làm đâu đó rồi mà ta???Nhưng ko chắc đâu...

Theo nguyên lí Dirichlet,tồn tại hai trong ba số x - 1; y - 1; z- 1 mà tích chúng không âm.

Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\Rightarrow xy\ge x+y-1\)

\(\Rightarrow xyz\ge xz+yz-z\). Suy ra:

\(VT\ge x^2+y^2+xz+yz+z^2-z\)

\(=x^2+y^2+z\left(x+y+z\right)-z\)

\(=\left(x^2+1\right)+\left(y^2+1\right)+3z-z-2\)

\(\ge2\left(x+y+z\right)-2=2.3-2=6-2=4^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi x = y = z = 1

Akai Haruma
7 tháng 7 2019 lúc 10:57

Cách khác:

Theo BĐT Schur bậc 3:

\(xyz\geq (x+y-z)(x+z-y)(y+z-x)=(3-2x)(3-2y)(3-2z)\)

\(\Leftrightarrow xyz\geq (9-6y-6x+4xy)(3-2z)\)

\(\Leftrightarrow 9xyz\geq 27-18(x+y+z)+12(xy+yz+xz)=-27+12(xy+yz+xz)\)

\(\Rightarrow xyz\geq -3+\frac{4}{3}(xy+yz+xz)\)

Do đó:

\(x^2+y^2+z^2+xyz\geq x^2+y^2+z^2-3+\frac{4}{3}(xy+yz+xz)\)

\(=\frac{2}{3}(x+y+z)^2+\frac{x^2+y^2+z^2}{3}-3\geq \frac{2}{3}(x+y+z)^2+\frac{(x+y+z)^2}{9}-3=4\)

(theo BĐT AM-GM)

Ta có đpcm. Dấu "=" xảy ra khi $x=y=z=1$


Các câu hỏi tương tự
nguyễn cẩm ly
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyen Thi Bich Huong
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Đinh Hạnh
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết