Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Hạnh

Cho x , y , z là các số thực dương thỏa mãn x+y+z =xyz

Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)

Hoàng Thị Ánh Phương
27 tháng 2 2020 lúc 9:33

Từ giả thiết suy ra : \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

Nên ta có : \(\frac{\sqrt{1+x^2}}{x}=\sqrt{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\sqrt{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}\le\frac{1}{2}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Dấu " = " \(\Leftrightarrow y=z\)

Vậy \(\frac{1+\sqrt{1+x^2}}{x}\le\frac{1}{2}\left(\frac{4}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có :

\(\frac{1+\sqrt{1+y^2}}{y}\le\frac{1}{2}\left(\frac{1}{x}+\frac{4}{y}+\frac{1}{z}\right);\frac{1+\sqrt{1+z^2}}{z}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{4}{z}\right)\)

Vậy ta có :

\(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Dấu " = " \(\Leftrightarrow x=y=z\)

Ta có :

\(\left(x+y+z\right)^2-3\left(xy+yz+xx\right)=...=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]\ge0\)

Nên \(\left(x+y+x\right)^2\ge3\left(xy+yz+xx\right)\)

\(\Rightarrow\left(xyz\right)^2\ge3\left(xy+yz+xz\right)\Rightarrow3\frac{xy+yz+xz}{xyz}\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le xyz\)

Vậy \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)

Dấu " = " \(\Leftrightarrow x=y=z\)

Chúc bạn học tốt !!

Khách vãng lai đã xóa
Nguyễn Việt Lâm
27 tháng 2 2020 lúc 9:01

\(\frac{1+\frac{1}{2}.2.\sqrt{1+x^2}}{x}\le\frac{1+\frac{1}{4}\left(x^2+5\right)}{x}=\frac{x}{4}+\frac{9}{4x}\)

\(\Rightarrow VT\le\frac{1}{4}\left(x+y+z\right)+\frac{9}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(VT\le\frac{1}{4}\left(x+y+z\right)+\frac{9\left(xy+yz+zx\right)}{4xyz}=\frac{1}{4}\left(x+y+z\right)+\frac{9\left(xy+yz+zx\right)}{4\left(x+y+z\right)}\)

\(VT\le\frac{1}{4}\left(x+y+z\right)+\frac{3\left(x+y+z\right)^2}{4\left(x+y+z\right)}=x+y+z=xyz\)

Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
fghj
Xem chi tiết
Nguyễn Công Thành
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
阮芳邵族
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết