\(2\left(x+y+z\right)=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)\)
\(\Rightarrow xyz\le2\)
\(S=xyz+\frac{5}{xyz}\ge xyz+\frac{4}{xyz}+\frac{1}{xyz}\ge2\sqrt{\frac{4xyz}{xyz}}+\frac{1}{2}=\frac{9}{2}\)
\(S_{min}=\frac{9}{2}\) khi \(x=y=z=\sqrt[3]{2}\)