Cho các số thực dương a, b thỏa mãn điều kiện: \(a+b< =1\). Tìm GTNN của biểu thức: \(P=\dfrac{b^2}{a^2b^2+b^2+1}+\dfrac{b}{2a}\)
Cho a, b, c > 0 và \(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}>2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = abc
Cho hai số dương a và b thỏa mãn a + b = 1. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}\)
Cho a,b,c > 0 thỏa mãn \(ab+bc+ca+2abc=1\). Tìm giá trị nhỏ nhất của
\(P=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-2\left(a+b+c\right)\)
Cho các số thực dương a,b,c thỏa mãn a + b + c = 6. Chứng minh bất đẳng thức:
\(\dfrac{ab}{6+2b+c}+\dfrac{bc}{6+2c+a}+\dfrac{ca}{6+2a+b}\le1\).
Bài 1: Cho số thực dương ab + bc + ca =1. Tìm GTLN của
\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Bài 2: Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz . CMR:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Câu 1: cho a,b,c là các số thực dương. Chứng minh rằng: (\(1+\dfrac{a}{b})\)\((1+\dfrac{b}{c})\)\((1+\dfrac{c}{a})\) ≥ 8
Cho a, b, c > . Chứng minh rằng:
a, \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
b, \(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
Bất đẳng thức nào sau đây luôn đúng với giá trị của biến, giải thích
A. \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2+b^2+c^2\right)\)
B. \(a^2+b^2\ge3ab\)
C. \(x^3+y^3+1\ge3xy\)
D. \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)