\(T=\dfrac{a+b+c}{\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\)
\(=\dfrac{8\left(a+b+c\right)}{9\sqrt[3]{abc}}+\dfrac{a+b+c}{9\sqrt[3]{abc}}+\dfrac{\sqrt[3]{abc}}{a+b+c}\)
\(\ge\dfrac{8.3\sqrt[3]{abc}}{9\sqrt[3]{abc}}+2\sqrt{\dfrac{a+b+c}{9\sqrt[3]{abc}}.\dfrac{\sqrt[3]{abc}}{a+b+c}}=\dfrac{8}{3}+\dfrac{2}{3}=\dfrac{10}{3}\)
\(minT=\dfrac{10}{3}\Leftrightarrow a=b=c\)