Cho a, b, c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=1\) . Cmr
\(\sqrt{\dfrac{ab}{a+b+2c}}+\sqrt{\dfrac{bc}{c+b+2a}}+\sqrt{\dfrac{ca}{a+c+2b}}\le\dfrac{1}{2}\)
Cho a,b,c là số thực dương. Tìm GTLN của
P=\(\dfrac{\sqrt{bc}}{a+2\sqrt{bc}}+\dfrac{\sqrt{ca}}{b+2\sqrt{ca}}+\dfrac{\sqrt{ab}}{c+2\sqrt{ab}}\)
Cho a,b,c là độ dài 3 cạnh tam giác. Tìm GTNN của
P=\(\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)
Cho a,b,c dương thỏa mãn a+b+c=1
Tìm GTLN của P=\(\dfrac{ab}{\sqrt{c+ab}}+\dfrac{bc}{\sqrt{a+bc}}+\dfrac{ca}{\sqrt{b+ca}}\)
Chứng minh a,b,c số thực không âm thỏa ab+bc+ca > 0 \(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{2c+1}}+2\sqrt{\dfrac{c}{a+b+c}}\ge2\)
Cho a,b,c>0 thỏa mãn\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). CMR
\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=1\) . Cmr:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge2+ab+bc+ca\)
Cho a;b;c >0 thỏa \(a^2+b^2+c^2\ge\left(a+b+c\right)\sqrt{ab+bc+ca}\).Tìm Min
\(a\left(a-2b+2\right)+b\left(b-2c+2\right)+c\left(c-2a+2\right)+\dfrac{1}{abc}\) (Hà Tĩnh 2018)
Cho x,y,z dương thỏa mãn ab+bc+ca=1
Tìm GTLN của P=\(\dfrac{a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)