Ta có: \(\dfrac{a+b}{2ab}\ge\dfrac{2}{a+b}\)
\(\sqrt{\dfrac{a+b}{2ab}}\ge\sqrt{\dfrac{2}{a+b}}\)
Tương tự cho 2 hạng tử còn lại , cộng vế theo vế, ta được:
\(P\ge\sqrt{2}\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}+\dfrac{1}{\sqrt{c+a}}\right)\)
Sử dụng Cauchy-Schwarz dạng Engel và Bunyakovsky,ta có:
\(P\ge\sqrt{2}\left(\dfrac{9}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}}\right)\)
\(P\ge\sqrt{2}\left(\dfrac{9}{\sqrt{2\left(a+b+c\right).3}}\right)=\sqrt{2}\left(\dfrac{9}{\sqrt{2.3.3}}\right)=3\)
GTNN của P là 3 khi a=b=c=1