cho a,b,c > 0 . Cmr:
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=1\) . Cmr:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge2+ab+bc+ca\)
Cho a,b,c là các số thực. CMR:
\(\frac{-1}{8}\le\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(1-ab\right)\left(1-bc\right)\left(1-ca\right)}{\left(1+a^2\right)^2\left(1+b^2\right)^2\left(1+c^2\right)^2}\le\frac{1}{8}\).
Cho a,b,c>0.CMR:
\(\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{\left(a+b+c\right)^3}{abc}\ge28\)
Cho a,b,c >0 TM\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=2\). CMR:\(ab+bc+ca\ge12\)
Help me gấp với các god Trần Thanh Phương?Amanda?tthLightning FarronNguyễn Việt LâmAkai Haruma
cho a,b,c > 0 .Cmr:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Cho a, b, c > 0
Cmr: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Cho các số thực dương a,b,c .
Tìm giá trị lớn nhất của biểu thức \(P=\frac{ab}{a^2+ab+bc}+\frac{bc}{b^2+bc+ca}+\frac{ca}{c^2+ca+ab}\)
cho a,b,c là các số thực dương thỏa mãn ab+bc+ca=3. CMR:
\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ab}\ge abc\)
cho a,b,c> 0 thỏa mãn a+b+c = abc. Tìm GTLN của
\(S=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a, b, c là các số thực dương. Tìm GTNN của biểu thức:
\(P=\frac{\sqrt{bc}}{a+2\sqrt{bc}}+\frac{\sqrt{ca}}{b+2\sqrt{ca}}+\frac{\sqrt{ab}}{c+2\sqrt{ab}}\)