\(18\ge x^2+y^2+z^2+x+y+z\ge\frac{1}{3}\left(x+y+z\right)^2+x+y+z\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-54\le0\)
\(\Leftrightarrow\left(x+y+z+9\right)\left(x+y+z-6\right)\le0\)
\(\Leftrightarrow x+y+z-6\le0\)
\(\Leftrightarrow x+y+z\le6\)
Do đó:
\(P\ge\frac{9}{2\left(x+y+z\right)+3}\ge\frac{9}{2.6+3}=\frac{3}{5}\)
Dấu "=" xảy ra khi \(x=y=z=2\)