Cho ba số thực dương x,y,z. Tính GTNN \(P=\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}\)
Cho3 số x,y,z dương sao cho tổng của cả 3 số nhỏ hơn hoặc bằng 1. Tìm GTNN của
\((x+\dfrac{1}{y})(y+\dfrac{1}{z})(z+\dfrac{1}{x})\)
Cho ba số thực dương x,y,z. Biểu thức P=\(\dfrac{1}{2}\left(x^2+y^2+z^2\right)+\dfrac{x}{yz}+\dfrac{y}{zx}+\dfrac{z}{xy}\) có GTNN là bao nhiêu
Cho các số thực dương x, y, z thỏa mãn \(x+y+z=2020xyz\) . Cmr \(\dfrac{x^2+1+\sqrt{2020x^2+1}}{x}+\dfrac{y^2+1+\sqrt{2020y^2+1}}{y}+\dfrac{z^2+1+\sqrt{2020z^2+1}}{z}\le2020.2021xyz\)
Cho các số dương x, y, z thỏa mãn điều kiện \(x^2+y^2+z^2=1\).CM \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}\ge\dfrac{1}{3}\)
mong mọi nguòi giúp thank you
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\). GTNN của biểu thức P=3x+y+6z
cho a,b,c>0 thỏa x2+y2+z2=1.tìm gtnn của P=\(\frac{x}{y^2+z^2}+\frac{y}{z^2+x^2}+\frac{z}{x^2+y^2}\)
Cho x, y, z là các số thực dương thỏa mãn \(\left\{{}\begin{matrix}x+z+yz=1\\y-3z+xz=1\end{matrix}\right.\)
Tìm GTNN của biểu thức T = x2 + y2
cho a,b,c là các số thực dương thỏa mãn
x2+y2+z2=2(xy+yz+zx). tìm gtnn của biểu thức P=x+y+z+\(\frac{1}{2xyz}\)