\(P=\dfrac{x^2}{2}+\dfrac{y^2}{2}+\dfrac{z^2}{2}+\dfrac{x^2+y^2+z^2}{xyz}\)
\(\Rightarrow P\ge\dfrac{x^2}{2}+\dfrac{y^2}{2}+\dfrac{z^2}{2}+\dfrac{xy+xz+yz}{xyz}\)
\(\Rightarrow P\ge\dfrac{x^2}{2}+\dfrac{1}{x}+\dfrac{y^2}{2}+\dfrac{1}{y}+\dfrac{z^2}{2}+\dfrac{1}{z}\)
\(\Rightarrow P\ge\left(\dfrac{x^2}{2}+\dfrac{1}{2x}+\dfrac{1}{2x}\right)+\left(\dfrac{y^2}{2}+\dfrac{1}{2y}+\dfrac{1}{2y}\right)+\left(\dfrac{z^2}{2}+\dfrac{1}{2z}+\dfrac{1}{2z}\right)\)
\(\Rightarrow P\ge3\sqrt[3]{\dfrac{x^2}{2}.\dfrac{1}{2x}.\dfrac{1}{2x}}+3\sqrt[3]{\dfrac{y^2}{2}.\dfrac{1}{2y}.\dfrac{1}{2y}}+3\sqrt[3]{\dfrac{z^2}{2}.\dfrac{1}{2z}.\dfrac{1}{2z}}=\dfrac{9}{2}\)
\(\Rightarrow P_{min}=\dfrac{9}{2}\) khi \(x=y=z=1\)