bài 2 b)
theo BĐT tam giác ta có
a>b-c
=> a2> (b-c)2
=>a2> b2-2bc+c2
=> a2+2bc>b2+c2 (đpcm)
1)c)\(A=\dfrac{x^5+x^2}{x^3-x^2+x}\)
\(A=\dfrac{x\left(x^4+x\right)}{x\left(x^2-x+1\right)}\)
\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}\)
\(A=\dfrac{x\left(x+1\right)\left(x^2-x+1\right)}{x^2-x+1}\)
\(A=x\left(x+1\right)\)
\(A=x^2+x\)
\(A=x^2+x+\dfrac{1}{4}-\dfrac{1}{4}\)
\(A=\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow MINA=-\dfrac{1}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
2)a)Ta có \(2a^2+2b^2=5ab\)
\(\Leftrightarrow2a^2-5ab+2b^2=0\)
\(\Leftrightarrow2a^2-ab-4ab+2b^2=0\)
\(\Leftrightarrow a\left(2a-b\right)+2b\left(b-2a\right)=0\)
\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2a-b=0\\a-2b=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{b}{2}\left(voly\right)\\a=2b\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{3a-b}{2a+b}=\dfrac{6b-b}{4b+b}=1\)