P= (x-a)(x-b)(x-c)
=(x2-ax-bx+ab)(x-c)
=x3-cx2-ax2+acx-bx2+bcx+abx-abc
=x3-(a+b+c)x2+(ab+bc+ca)x-abc
=x3-12x2+47x-60
b) Ta có: (x-4)3=x3-12x2+48x-64
=> P=(x-4)3-(x+4)
Đặt t=x-4
P=t3-t
=t(t2-1)
=t(t+1)(t-1)
=(x-4)(x-3)(x-5)
\(\left|x\right|=3\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Với x=3 thì
P=\(\left(3-4\right)\left(3-3\right)\left(3-5\right)=0\)
Với x=-3 thì
\(P=\left(-3-4\right)\left(-3-3\right)\left(-3-5\right)=-336\)