\(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x\left(\sqrt{x}+1\right)-y\left(1-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-yx\sqrt{x}-xy\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{x+y+\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=\dfrac{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)+2\sqrt{xy}-xy-1}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\\ P=1-\dfrac{\left(\sqrt{xy}-1\right)^2}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}=2\\ \Rightarrow\dfrac{\left(\sqrt{xy}-1\right)^2}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}=1\\ \Leftrightarrow\left(\sqrt{xy}-1\right)^2=\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)\\ \Leftrightarrow xy-2\sqrt{xy}+1=\sqrt{x}-\sqrt{y}+1-\sqrt{xy}\\ \Leftrightarrow\sqrt{x}-\sqrt{y}-xy+\sqrt{xy}=0\)
tự giải quyết tiếp nhá :)) h có việc :)) nếu còn ko bt thì mai làm nốt cho :))