a) P=\((\frac{x-1}{\sqrt{x}})\):\([\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}(\sqrt{x}+1)}]\) (x>0;x≠1)
P=\(\frac{x-1}{\sqrt{x}}\):\([\)\(\frac{(\sqrt{x}-1).(\sqrt{x}+1)}{\sqrt{x}(\sqrt{x}-1)}\)\(]\)
P=\(\frac{x-1}{\sqrt{x}}\):\(\frac{x-1}{\sqrt{x}(\sqrt{x}+1)}\)
P=\(\frac{x-1}{\sqrt{x}}\cdot\frac{\sqrt{x}(\sqrt{x}+1)}{x-1}\)
P=\(\sqrt{x}+1\)
b,Có x=\(\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)
=>\(\sqrt{x}=\sqrt{\left(1-\sqrt{3}\right)^2}=\left|1-\sqrt{3}\right|=\sqrt{3}-1\)
Có P=\(\sqrt{x}+1=\sqrt{3}-1+1=\sqrt{3}\)
c, Có P\(\sqrt{x}=6\sqrt{x}-3\)
<=>\(\sqrt{x}\left(P-6\right)+3=0\) <=> \(\sqrt{x}\left(\sqrt{x}+1-6\right)+3=0\) <=> \(\sqrt{x}\left(\sqrt{x}-5\right)+3=0\)
<=> \(x-5\sqrt{x}+3=0\) <=> \(\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) => \(\left[{}\begin{matrix}x=\frac{5+\sqrt{13}}{2}\left(tm\right)\\x=\frac{5-\sqrt{13}}{2}\left(tm\right)\end{matrix}\right.\)