\(\Leftrightarrow P=\left(\frac{x\left(3-x\right)}{9-x^2}+\frac{2\left(x+3\right)}{9-x^2}+\frac{x^2-1}{9-x^2}\right):\left(\frac{2\left(x+3\right)-\left(x+5\right)}{x+3}\right)\)
\(\Leftrightarrow P=\frac{3x-x^2+2x+6+x^2-1}{9-x^2}:\frac{x+1}{x+3}\)
\(\Leftrightarrow P=\frac{5\left(x+1\right)}{\left(3-x\right)\left(x+3\right)}.\frac{x+3}{x+1}\)
\(\Leftrightarrow P=\frac{5}{3-x}\) Ta có A=\(\frac{10x^2}{x-3}\)