a) ĐKXĐ: x∉{0;3;-3}
Ta có: \(P=\frac{x+1}{3x-x^2}:\left(\frac{3+x}{3-x}-\frac{3-x}{3+x}-\frac{12x^2}{x^2-9}\right)\)
\(=\frac{x+1}{x\left(3-x\right)}:\frac{9+6x+x^2-\left(9-6x+x^2\right)+12x^2}{9-x^2}\)
\(=\frac{x+1}{x\left(3-x\right)}:\frac{12x\left(x+1\right)}{\left(3-x\right)\left(3+x\right)}\)
\(=\frac{x+1}{x\left(3-x\right)}\cdot\frac{\left(3-x\right)\left(3+x\right)}{12x\left(x+1\right)}\)
\(=\frac{3+x}{12x^2}\)
b) Ta có: |2x-1|=5
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=-5\\2x-1=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-4\\2x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
Thay x=-2 vào biểu thức \(P=\frac{3+x}{12x^2}\), ta được:
\(\frac{3+\left(-2\right)}{12\cdot\left(-2\right)^2}=\frac{1}{48}\)
Vậy: \(\frac{1}{48}\) là giá trị của biểu thức \(P=\frac{3+x}{12x^2}\) tại x=-2
c) Ta có: P<0
⇔\(\frac{3+x}{12x^2}< 0\)
mà \(12x^2\ge0\forall x\)
nên 3+x<0
hay x<-3
Vậy: Khi x<-3 thì P<0
a, \(\frac{x+1}{3x-x^2}:\left(\frac{3+x}{3-x}-\frac{3-x}{3+x}-\frac{12x^2}{x^2-9}\right)\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) \(\pm\) 3)
= \(\frac{x+1}{x\left(3-x\right)}:\left(\frac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\frac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}+\frac{12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
= \(\frac{x+1}{x\left(3-x\right)}:\left(\frac{\left(3+x\right)^2-\left(3-x\right)^2+12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
= \(\frac{x+1}{x\left(3-x\right)}:\frac{\left(3+x-3+x\right)\left(3+x+3-x\right)+12x^2}{\left(3-x\right)\left(3+x\right)}\)
= \(\frac{x+1}{x\left(3-x\right)}:\frac{12x^2+12x}{\left(3-x\right)\left(3+x\right)}\)
= \(\frac{x+1}{x\left(3-x\right)}:\frac{12x\left(x+1\right)}{\left(3-x\right)\left(3+x\right)}\)
= \(\frac{\left(x+1\right)\left(3-x\right)\left(3+x\right)}{12x^2\left(x+1\right)\left(3-x\right)}\)
= \(\frac{3+x}{12x^2}\)
b, |2x - 1| = 5
\(\Leftrightarrow\) 2x - 1 = -5 hoặc 2x - 1 = 5
\(\Leftrightarrow\) x = -2 và x = 3
Thay x = -2 vào P ta được
\(\frac{3-2}{12\left(-2\right)^2}\) = \(\frac{1}{48}\)
Vậy P = \(\frac{1}{48}\) nếu x = -2
Thay x = 3 vào P ta được:
\(\frac{3+3}{12\cdot3^2}\) = \(\frac{6}{108}\) = \(\frac{1}{18}\)
Vậy P = \(\frac{1}{18}\) nếu x = 3
c, Ta có: P < 0 hay \(\frac{3+x}{12x^2}< 0\)
Vì 12x2 > 0 với mọi x
\(\Rightarrow\) 3 + x < 0
\(\Leftrightarrow\) x < -3 (TMĐKXĐ)
Vậy x < -3
Chúc bn học tốt!!