b/Để P=-1
=>\(\frac{\sqrt{x}-1}{\sqrt{x}+1}=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Vậy : để P =-1 thì x=0
c/Để P>2 thì \(\frac{\sqrt{x}-1}{\sqrt{x}+1}>2\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}-2>0\Leftrightarrow\frac{\sqrt{x}-1-2\sqrt{x}-2}{\sqrt{x}+1}>0\Leftrightarrow\frac{-\sqrt{x}-3}{\sqrt{x}+1}>0\)
Mà \(\sqrt{x}+1>0\)
\(\Leftrightarrow-\sqrt{x}-3>0
\Leftrightarrow-\sqrt{x}>3\Leftrightarrow\sqrt{x}< -3\)(vô lý)
Vậy không tồn tại x để P >2
a/ Đk: \(x\ge0;x\ne1\)
Ta có: P=\(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
i/ Ta có : \(x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+2+2-\sqrt{3}=4\)
Thay x=4 vào P ta có :
\(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{2-1}{2+1}=\frac{1}{3}\)
k/Để P < \(\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\Leftrightarrow2\sqrt{x}-2< \sqrt{x}+1\Leftrightarrow2\sqrt{x}-\sqrt{x}< 1+2\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)
Vậy để P < \(\frac{1}{2}\) thì \(0\le x< 9;x\ne1\)
b, Có P=-1
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\)=-1
<=> \(\sqrt{x}-1=-\sqrt{x}-1\) <=> \(2\sqrt{x}=0\) <=> x=0(tm đk của x)
Vậy để P=-1 <=>x=0
c, Để P>2
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}>2\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-2>0\) <=> \(\frac{-\left(\sqrt{x}+3\right)}{\sqrt{x}+1}>0\) <=> \(\frac{\sqrt{x}+3}{\sqrt{x}+1}< 0\)(vô lý)
Vậy không có g/trị x thỏa mãn P>2
g, Có P=\(\frac{\sqrt{x}-1}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}< 1\) (vì \(\frac{2}{\sqrt{x}+1}>0\))
Vậy P<1
h, Có \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)
vì \(\sqrt{x}\ge0\) <=> \(\sqrt{x}+1\ge1\) <=> \(\frac{2}{\sqrt{x}+1}\le2\)
<=> \(1-\frac{2}{\sqrt{x}+1}\ge1-2=-1\) <=> \(P\ge-1\)
Dấu "=" xảy ra <=> x=0
Vậy minP=-1
i, Có \(x=\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)
=\(\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
=\(\sqrt{3}+2+\left|2-\sqrt{3}\right|=\sqrt{3}+2+2-\sqrt{3}=4\)
=> x=4(tm đk của x)
Thay x=4 vào P đã rút gọn có:
P=\(\frac{\sqrt{4}-1}{\sqrt{4}+1}=\frac{1}{3}\)
Vậy P=\(\frac{1}{3}\) tại x=4
k, Có P<\(\frac{1}{2}\)
<=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}< \frac{1}{2}\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{1}{2}< 0\) <=> \(\frac{\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}< 0\)
=> \(\left\{{}\begin{matrix}\sqrt{x}-3>0\\2\left(\sqrt{x}+1\right)>0\end{matrix}\right.\) (vì mẫu luôn >0) <=> \(\left\{{}\begin{matrix}\sqrt{x}>3\\\sqrt{x}+1>0\end{matrix}\right.\)(luôn đúng) <=> \(x>9\)
Vậy để P<\(\frac{1}{2}\) thì x>9