\(M=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)-\left(x^4-x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\left(x^4-\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+1}\right)\)
\(=\left(\frac{x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\right)\left(x^4-x^2+1\right)\)
\(=\frac{x^2-2}{x^2+1}\)
b/ \(M=\frac{x^2+1-3}{x^2+1}=1-\frac{3}{x^2+1}\)
Do \(x^2+1\ge1\Rightarrow\frac{3}{x^2+1}\le3\Rightarrow1-\frac{3}{x^2+1}\ge1-3=-2\)
\(\Rightarrow M_{min}=-2\) khi \(x=0\)