\(f\left(-1\right)=a+c-b\)
\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)
\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)
\(f\left(-1\right)=a+c-b\)
\(f\left(3\right)=9a+3b+c=10a+2b+2c+b-a-c=b-a-c\)
\(\Rightarrow f\left(-1\right).f\left(3\right)=\left(a+c-b\right)\left(b-a-c\right)=-\left(a+c-b\right)^2\le0\)
Cho đa thức: \(f\left(x\right)=ax^2+bx+c\) biết \(5a+b+2c=0\). Chứng tỏ rằng: \(f\left(-1\right).f\left(2\right)\le0\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\). Biết 10a+b+c=0. Chứng minh: \(f\left(4\right).f\left(-2\right)\le0\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) . Biết rằng 6a-12b-c = 0 . Chứng tỏ rằng \(f\left(2\right).f\left(-3\right)\ge0\)
a) Cho \(f(x)=ax^2+bx+c \) với a, b, c là các số hữu tỉ.
Chứng minh rằng \(f\left(-2\right).f\left(3\right)\le0\).Biết rằng \(13a+b+2c=0\)
b) Tìm giá trị nguyên của x để biểu thức \(A=\frac{2}{6-x}\)có giá trị lớn nhất
Cho đa thức \(f\left(x\right)=ax^3+bx+c\) . Biết \(f\left(1\right)=f\left(-1\right)=0\) . Tính \(M=a^{2019}+b^{2019}+c^{2019}+2018\)
Bài 1: a) Chứng tỏ rằng đa thức \(f\left(x\right)=5x^3-7x^2+4x-2\) có một trong các nghiệm bằng 1.
b)Chứng tỏ rằng đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) có một trong các nghiệm bằng 1 nếu a+b+c+d=0.
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) (a,b,c,d là các số nguyên) . Biết 7a+b+c = 0 . Chứng minh rằng f(3) . f(-2) là số chính phương
a)Tìm các số a,b biết đa thức \(f\left(x\right)=ax+b\)
và \(f\left(1\right)=1;f\left(x\right)=4\)
b)Chứng tỏ rằng đa thức f(x) có ít nhất 2 nghiệm biết :
x . f(x+1) = (x+3).f(x)
Cho biết hàm số: \(y=f\left(x\right)=ax^2+bx+c\)
Cho biết: \(f\left(0\right)=2010;f\left(1\right)=2011;f\left(-1\right)=2012\). Tính \(f\left(-2\right)=?\)