Lời giải:
Ta có:
$f(4)=16a+4b+c$
$f(-2)=4a-2b+c$
Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$
$\Rightarrow f(-2)=-f(4)$
$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$
Ta có đpcm.
Lời giải:
Ta có:
$f(4)=16a+4b+c$
$f(-2)=4a-2b+c$
Cộng theo vế: $f(4)+f(-2)=20a+2b+2c=2(10a+b+c)=2.0=0$
$\Rightarrow f(-2)=-f(4)$
$\Rightarrow f(4).f(-2)=f(4).-f(4)=-f(4)^2\leq 0$
Ta có đpcm.
Cho đa thức: \(f\left(x\right)=ax^2+bx+c\) biết \(5a+b+2c=0\). Chứng tỏ rằng: \(f\left(-1\right).f\left(2\right)\le0\)
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) . Biết rằng 6a-12b-c = 0 . Chứng tỏ rằng \(f\left(2\right).f\left(-3\right)\ge0\)
Cho biểu thức: \(f\left(x\right)=\text{ax}^2+bx+c\) biết \(5a+b+c=0\). Chứng tỏ \(f\left(-1\right).f\left(3\right)\le0\)
Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) (a,b,c,d là các số nguyên) . Biết 7a+b+c = 0 . Chứng minh rằng f(3) . f(-2) là số chính phương
Cho đa thức \(f\left(x\right)=ax^3+bx+c\) . Biết \(f\left(1\right)=f\left(-1\right)=0\) . Tính \(M=a^{2019}+b^{2019}+c^{2019}+2018\)
a) Cho \(f(x)=ax^2+bx+c \) với a, b, c là các số hữu tỉ.
Chứng minh rằng \(f\left(-2\right).f\left(3\right)\le0\).Biết rằng \(13a+b+2c=0\)
b) Tìm giá trị nguyên của x để biểu thức \(A=\frac{2}{6-x}\)có giá trị lớn nhất
Cho 2 đa thức sau :
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)\)
\(g\left(x\right)=x^3+ax^{2\:}+bx+2\)
Xác định a và b biết nghiệm của đa thức f(x) cũng là nghieemj của đa thức g(x)
a)Tìm các số a,b biết đa thức \(f\left(x\right)=ax+b\)
và \(f\left(1\right)=1;f\left(x\right)=4\)
b)Chứng tỏ rằng đa thức f(x) có ít nhất 2 nghiệm biết :
x . f(x+1) = (x+3).f(x)
cho đa thức f(x) = ax4 + bx3 + cx2 + dx + e với a,b,c,d,e ∈ Z và a ≠ 0. Biết rằng f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị của biểu thức A = \(\frac{f\left(12\right)+f\left(-8\right)}{10}+2019\)