Để A là số nguyên thì \(x-3\sqrt{x}+2\sqrt{x}-6+7⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{16;4;100\right\}\)
Để A là số nguyên thì \(x-3\sqrt{x}+2\sqrt{x}-6+7⋮\sqrt{x}-3\)
=>\(\sqrt{x}-3\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{16;4;100\right\}\)
cho biểu thức Q=\(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)với x\(\ge0,x\ne1\)
a) Rút gọn Q
b) tìm x để Q=3
Help me! Mai tớ phải nộp rồi ạ
Cho biểu thức P = 2.(\(\dfrac{1}{\sqrt{x-1}}\) - \(\dfrac{1}{\sqrt{x-1}+1}\)) : \(\dfrac{\sqrt{x-1}}{x+\sqrt{x+1}+1}\)
a, Rút gọn P
b, Tìm x để P là một số nguyên
Cho biểu thức A = \(\dfrac{2}{\sqrt{x}-3}\) + \(\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\) + \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a, Rút gọn biểu thức A
b, Tìm x thuộc Z để biểu thức A nhận giá trị nguyên
Bài 5. Cho biểu thức: C = \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-2}\) 𝑣ớ𝑖 𝑥 ≥ 0; 𝑥 ≠ 4. Tìm x nguyên để C đạt giá trị nguyên nhỏ nhất
Bài 6. Cho biểu thức: D = \(\dfrac{x-3}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm x nguyên để D có giá trị là số nguyên
Tìm giá trị lớn nhất của:
P=\(\dfrac{x+16}{\sqrt{x}+3}\)
Help me!!! Mai mình phải nộp rùi huhu.
Cho các biểu thức:
A = \(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B = \(\dfrac{3}{\sqrt{x}-1}\) với \(x\ge0;x\ne1;x\ne9\)
Đặt P = A - B. Biểu thức P sau khi tính được là \(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\). Tìm số tự nhiên \(x\) để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất
Cho biểu thức A= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\)+\(\dfrac{3\sqrt{x}-2}{1-\sqrt[]{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Rút gọc P
b, tìm x để P nhận giá trị nguyên
cho biểu thức Q=\(\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
a) Rút gọn Q
b) tìm x để Q=3
Help me ><
cho hai biểu thức
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{2-5\sqrt{x}}{4-x}\) (\(x\ge0;x\ne4\))
a, tìm giá trị của A khi x = 25
b, rút gọn biểu thức B
c, tìm số tự nhiên x để \(\dfrac{B}{A}\le\dfrac{1}{3}\)