Ta có: B = \(\sqrt{4a}\) - 4a
= \(\dfrac{1}{4}\) - ( 4a - \(\sqrt{4a}\) + \(\dfrac{1}{4}\) )
= \(\dfrac{1}{4}\) - (\(\sqrt{4a}\) - \(\dfrac{1}{2}\) )2
Do : (\(\sqrt{4a}\) - \(\dfrac{1}{2}\) )2 \(\ge\) 0 với mọi a \(\ge\) 0
=> B \(\le\) \(\dfrac{1}{4}\)
Dấu "=" xảy ra <=> \(\sqrt{4a}-\dfrac{1}{2}\) = 0
<=> a = \(\dfrac{1}{16}\)
Vậy Bmax = \(\dfrac{1}{4}\) khi a = \(\dfrac{1}{16}\)