chúc bạn học tốt ^^ ( lần trước có làm, h lười đánh lại:P)
chúc bạn học tốt ^^ ( lần trước có làm, h lười đánh lại:P)
Cho a+b+c=0. Chứng minh rằng:\(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Cho a,b,c là các cạnh tam giác. Chứng minh rằng:
a.\(a^3+b^3+c^3+2abc< a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\)
b.\(\left(a+b+c\right)^2\le9bc\) với \(a\le b\le c\)
c. \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\)
d.\(4a^2b^2>\left(a^2+b^2-c^2\right)^2\)
Chứng minh rằng nếu:\(c^2+2\left(ab-ac-bc\right)=0\left(b\ne0;a+b\ne c\right)\)
thì:\(\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{a-c}{b-c}\)
chứng minh rằng:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+4abc=c\left(c+b\right)^2+a\left(b+c\right)^2+b\left(c+a\right)^2\)
Chứng minh rằng:
\(2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]\)
Phân tích đa thức sau thành nhân tử:
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
b) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
c) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
d) \(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)
e) \(a.\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c^2\left(a+b\right)^2.\left(a-b\right)\)
Cho a-b+c=-4. Tính B = \(\dfrac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2}\)
1) Phân tích đa thức thành nhân tử:
\(\left(x+y\right)^3-x^3-y^3\)
2) Chứng minh rằng nếu:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)\(=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) thì a=b=c
Phân tích các đa thức sau thành nhân tử
a) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)
b) \(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
c) \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
d) \(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)