Bài 9: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Edogawa Conan

Chứng minh rằng:

\(2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2]\)

Trần Phan Thanh Thảo
13 tháng 1 2018 lúc 8:30

Xét vế trái:

\(2\left(a^3+b^3+c^3-3abc\right)\)

\(=2\left[\left(a^3+b^3\right)+c^3-3abc\right]\)

\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]\)

\(=2\left\{\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\right\}\)

\(=2\left\{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\right\}\)

\(=2\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-c^2-3ab\right)\)

\(=2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(=\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)

\(=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(đpcm\right)\)

Chúc bạn học tốt!

Nguyễn Anh Kim Hân
13 tháng 1 2018 lúc 8:44

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b\right)-3abc\)\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\left(đpcm\right)\)

hattori heiji
13 tháng 1 2018 lúc 12:42

cái này dễ

mà có ng làm rồi nên thôi mk ko làm nx


Các câu hỏi tương tự
Phuong Trinh Nguyen
Xem chi tiết
Lê Đức Lực Online
Xem chi tiết
Edogawa Conan
Xem chi tiết
Trịnh Thị Kim Hồng
Xem chi tiết
Hoàng Diệu Anh
Xem chi tiết
anh phuong
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Linh Lê
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết