Xét vế trái:
\(2\left(a^3+b^3+c^3-3abc\right)\)
\(=2\left[\left(a^3+b^3\right)+c^3-3abc\right]\)
\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]\)
\(=2\left\{\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\right\}\)
\(=2\left\{\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\right\}\)
\(=2\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc-c^2-3ab\right)\)
\(=2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]\)
\(=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\left(đpcm\right)\)
Chúc bạn học tốt!
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b\right)-3abc\)\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)\(\Rightarrow2\left(a^3+b^3+c^3-3abc\right)=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\left(đpcm\right)\)
cái này dễ
mà có ng làm rồi nên thôi mk ko làm nx