Đặt x = \(\dfrac{1}{a}\); y = \(\dfrac{1}{b}\); z = \(\dfrac{1}{c}\); x + y + z = 0 (vì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\))
x = -(y + z)
x3 + y3 + z3 - 3xyz = - (y + z)3 + y3 + z3 - 3xyz
-(y3 + 3y2z + 3y2z2 + z3) + y3 + z3 - 3xyz = -3yz(y + z + x) = -3yz . 0 = 0
Từ x3 + y3 +z3 - 3xyz = 0 \(\Leftrightarrow\) x3 + y3 +z3 = 3xyz
Do đó P = \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{3}{abc}=3\)
Nếu \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) thì \(\)P = \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ac}{b^2}=3\)