Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho a, b, c > 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). CMR:

\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ac}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)

Kuro Kazuya
20 tháng 5 2018 lúc 21:24

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

Xét \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\Leftrightarrow ab+bc+ac=abc\)

\(\Rightarrow VT=\dfrac{a^3}{a^2+ab+bc+ac}+\dfrac{b^3}{b^2+ab+bc+ac}+\dfrac{c^3}{c^2+ab+bc+ac}\)

\(\Leftrightarrow VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(b+a\right)\left(b+c\right)}+\dfrac{c^3}{\left(c+b\right)\left(c+a\right)}\)

Áp dụng bđt Cauchy ta có :

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge3\sqrt[3]{\dfrac{a^3}{64}}=\dfrac{3a}{4}\)

Thiết lập tương tự và thu lại ta có :

\(VT+\dfrac{a+b+c}{2}\ge\dfrac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{3}{4}\left(a+b+c\right)-\dfrac{1}{2}\left(a+b+c\right)=\dfrac{a+b+c}{4}\left(đpcm\right)\)

Dấu '' = '' xảy ra khi \(a=b=c=3\)


Các câu hỏi tương tự
Kresol♪
Xem chi tiết
Hoàng
Xem chi tiết
Hong Ra On
Xem chi tiết
ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
Nguyễn Đức Thịnh
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Xem chi tiết