Ta có BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}\) ≥ \(\dfrac{4}{a+b}\) ( \(a,b>0\) )
\(\dfrac{1}{b}+\dfrac{1}{c}\text{≥}\dfrac{4}{b+c}\left(b;c>0\right)\)
\(\dfrac{1}{a}+\dfrac{1}{c}\text{≥}\dfrac{4}{a+c}\left(a;c>0\right)\)
Cộng từng vế của các BĐT trên , ta có :
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\text{≥}\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{a+c}\)
⇔ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\text{≥}\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{a+c}\)
Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế theo vế ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\right)\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
\(\Rightarrowđpcm\)