Tính : \(S_n=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}\)
Cho A = 1 + 1/2 + 1/3 + 1/4 +...+ 1/4026, B = 1 + 1/3 + 1/5 + 1/7 +...+ 1/4025 So sánh A/B với 1 + 2013/2014
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
cho A=(\(\dfrac{1}{2^2}-1\))(\(\dfrac{1}{3^2}-1\))(\(\dfrac{1}{2^2}-1\))...........(\(\dfrac{1}{100^2}-1\)).SO sánh A với \(\dfrac{-1}{2}\)
Cho M = \(1-\dfrac{1}{2}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-\dfrac{1}{2^4}-....-\dfrac{1}{2^{10}}\) . So sánh M với \(\dfrac{1}{2^{11}}\)
So sánh A=1/1.2+1/2.3+1/3.4+...+1/2019.2020+1/2020.2021 với 1
So Sánh : A = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\) và B = \(\dfrac{2009^{2010}-2}{2009^{2011}-2}\)
1, P = \(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}\) - \(\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{2}{2004}}\)
2, Q = ( \(\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\) + \(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}\) ) : \(\dfrac{1980}{3758}\) + 155
3, A = 1.3 + 2.4 + 3.5 +....+ 97.99 + 98.100
4, B = 1.2.3 + 2.3.4. +...+ 48.49.50
5, C = \(\dfrac{1}{1.2.3.4}\) + \(\dfrac{1}{2.3.4.5}\) +...+ \(\dfrac{1}{27.28.29.30}\)
6, D = 1 + \(2^2\) + \(2^4\) + \(2^6\) + .... +\(2^{200}\)
7, E = \(\dfrac{1}{3.5}\)+ \(\dfrac{5}{5.7}\) +...+ \(\dfrac{1}{97.99}\)
Cho S = \(\dfrac{1}{1.2}+\dfrac{2}{1.2.3}+\dfrac{3}{1.2.3.4}+....+\dfrac{99}{1.2.3.....99.100}\)
Chứng minh rằng : S<1