Ôn tập chương II

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thị Yến

cho B=\(1+11^1+11^2+11^3+.....+11^9\)   chứng minh B chia hết cho 5

{Yêu toán học}_best**(...
4 tháng 3 2021 lúc 18:23

Xét chữ số tận cùng của các lũy thừa trên đều là 1

\(\rightarrow1+11^1+11^2+11^3+...+11^9\)

\(=1+\overline{...1}+\overline{...1}+\overline{...1}+...+\overline{...1}\)

\(=11^0+11^1+11^2+...+11^9\)

  Dãy trên có : 9-0+1=10 số hạng

-> Chữ số tận cùng của tổng là

       10.1=10 ( c/s tận cùng là số 0 )

\(\Rightarrow B⋮5\)( theo dấu hiệu chia hết )

Thinh phạm
4 tháng 3 2021 lúc 19:16

Xét chữ số tận cùng của các lũy thừa trên đều là 1

→1+111+112+113+...+119→1+111+112+113+...+119

=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯

=110+111+112+...+119=110+111+112+...+119

  Dãy trên có : 9-0+1=10 số hạng

-> Chữ số tận cùng của tổng là

       10.1=10 ( c/s tận cùng là số 0 )

⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết )

Xét chữ số tận cùng của các lũy thừa trên đều là 1

→1+111+112+113+...+119→1+111+112+113+...+119

=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1=1+...1¯+...1¯+...1¯+...+...1¯

=110+111+112+...+119=110+111+112+...+119

  Dãy trên có : 9-0+1=10 số hạng

-> Chữ số tận cùng của tổng là

       10.1=10 ( c/s tận cùng là số 0 )

⇒B⋮5⇒B⋮5( theo dấu hiệu chia hết ) soo

Thinh phạm
4 tháng 3 2021 lúc 20:22

Xét chữ số tận cùng của các lũy thừa trên đều là 1

→1+111+112+113+...+119

=1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+¯¯¯¯¯¯¯¯¯...1+...+¯¯¯¯¯¯¯¯¯...1

=110+111+112+...+119

  Dãy trên có : 9-0+1=10 số hạng

-> Chữ số tận cùng của tổng là

       10.1=10 ( c/s tận cùng là số 0 )

⇒B⋮5( theo dấu hiệu chia hết )


Các câu hỏi tương tự
Đỗ Thị Yến
Xem chi tiết
ThanhTrọng Trần
Xem chi tiết
KẺ_BÍ ẨN
Xem chi tiết
Lê Bảo Ngọc
Xem chi tiết
zoro_gaara_erza
Xem chi tiết
Himouto Umaru
Xem chi tiết
trương tuyết mai
Xem chi tiết
Yến Đào
Xem chi tiết
Nguyễn Thị Thùy Trâm
Xem chi tiết