1.Tìm số hữu tỉ x:
a)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b)\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
2.CMR:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
b)Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
Chứng minh rằng : \(\frac{7}{12}< A< \frac{5}{6}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Các bạn giúp mk với mk cần gấp thank you!!!
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{9.10}\) và \(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\). Tính A : B
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)
B=\(\frac{1}{1004.2006}+\frac{1}{1005.2006}+\frac{1}{1006.2006}+...+\frac{1}{2006.2006}\)
Tính A chia B
\(\frac{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...\frac{1}{200}}=1\)
Hãy chứng minh
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+......+\frac{1}{99.100}\)
Chứng minh rằng \(\frac{7}{12}< A< \frac{5}{6}\)
Cho A= \(\frac{1}{1.2}\) +\(\frac{1}{3.4}\) +\(\frac{1}{5.6}\) + ... + \(\frac{1}{99.100}\)
Chứng minh: \(\frac{7}{12}\) < A < \(\frac{5}{6}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\). CMR: \(\frac{7}{12}< A< \frac{5}{6}\)
Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\). CMR: \(\frac{7}{12}< A< \frac{5}{6}\)