Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{9.10}\) và \(B=\frac{1}{6.10}+\frac{1}{7.9}+\frac{1}{8.8}+\frac{1}{9.7}+\frac{1}{10.6}\). Tính A : B
1.Tìm số hữu tỉ x:
a)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b)\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
2.CMR:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
b)Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
Chứng minh rằng : \(\frac{7}{12}< A< \frac{5}{6}\)
cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{37.38}\)
và \(B=\frac{1}{20.38}+\frac{1}{21.37}+...+\frac{1}{38.20}\)
chứng minh rằng \(\frac{A}{B}\) là số nguyên
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\). CMR: \(\frac{7}{12}< A< \frac{5}{6}\)
Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\). CMR: \(\frac{7}{12}< A< \frac{5}{6}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+......+\frac{1}{99.100}\)
Chứng minh rằng \(\frac{7}{12}< A< \frac{5}{6}\)
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Chứng minh rằng: \(\frac{7}{12}< A< \frac{5}{6}\)
Các bạn giúp mk với mk cần gấp thank you!!!
Tính giá trị của biểu thức:
a) A= (153 + 5. 152 - 53) : ( 183 + 6. 182 - 63)
b) \(B=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2012}-1\right)\)
c) \(C=\frac{-1}{1.2}.\frac{-2^2}{2.3}.\frac{-3^2}{3.4}...\frac{-99^2}{99.100}.\frac{-100^2}{100.101}\)
\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)