Cho a,b,c,d phân biệt Chứng minh rằng:(a-b)(a-c)(b-c)(b-d)(c-d) chia hết 12
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Cho a,b,c,d > 0. Chứng minh: \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Cho a,b,c,d thỏa mãn a+b=c+d; \(a^2\)+\(b^2\)=\(c^2\)+\(d^2\)
Chứng minh rằng \(a^{2013}\)+\(b^{2013}\)+\(c^{2013}\)+\(d^{2013}\)
Cho a,b,c,d >0. Chứng minh rằng:
\(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)
Cho a,b,c,d là các số dương. Chứng minh rằng:
\(\dfrac{a-b}{b+c}+\dfrac{b-c}{c+d}+\dfrac{c-d}{d+a}\ge\dfrac{a-d}{a+b}\)
19: a) Cho (a-b)62+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Giups mình với !
@Nguyễn Huy Tú @DƯƠNG PHAN KHÁNH DƯƠNG@Nguyễn Thanh Hằng@Akai Haruma@Phùng Khánh Linh
Cho các số a,b,c,d thõa mãn .
a^2 +b^2 +(a-b)^2=c^2+d^2 + (c-d)^2
Chứng minh rằng: a^4 +b^4 + (a-b)^=c^4 +d^4 + (c-d)^4