a: Ta có: BC=DA(BADC là hình bình hành)
\(MB=MC=\dfrac{BC}{2}\)(M là trung điểm của BC)
\(NA=ND=\dfrac{AD}{2}\)(N là trung điểm của AD)
Do đó: MB=MC=NA=ND
Xét tứ giác ABMN có
BM//AN
BM=AN
Do đó: ABMN là hình bình hành
b: Hình bình hành ABMN có BA=BM(=BC/2)
nên ABMN là hình thoi
c: Ta có: MB//AD
=>\(\widehat{EBM}=\widehat{EAD}\)(hai góc đồng vị)
mà \(\widehat{EAD}=60^0\)
nên \(\widehat{EBM}=60^0\)
Ta có: BA=BE
BA=BM(=BC/2)
Do đó: BE=BM
Xét ΔBEM có BE=BM và \(\widehat{EBM}=60^0\)
nên ΔBEM đều
=>\(\widehat{BEM}=60^0\)
Xét tứ giác ANME có NM//AE(ABMN là hình thoi)
nên ANME là hình thang
Hình thang ANME(NM//AE) có \(\widehat{MEA}=\widehat{A}\left(=60^0\right)\)
nên ANME là hình thang cân
=>AM=NE