$4. Tổng và hiệu của hai vectơ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Cho ABCD là hình bình hành. Chứng minh \(\overrightarrow {MB}  - \overrightarrow {MA}  = \overrightarrow {MC}  - \overrightarrow {MD} \) với mỗi điểm M trong mặt phẳng.

Hà Quang Minh
24 tháng 9 2023 lúc 0:58

Ta có: \(\overrightarrow {AM}  =  - \overrightarrow {MA} ,\;\overrightarrow {DM}  =  - \overrightarrow {MD} \)

\( \Rightarrow \overrightarrow {MB}  - \overrightarrow {MA}  = \overrightarrow {MB}  + \overrightarrow {AM}  = \overrightarrow {AM}  + \overrightarrow {MB}  = \overrightarrow {AB} \)

Tương tự ta có: \(\overrightarrow {MC}  - \overrightarrow {MD}  = \overrightarrow {MC}  + \overrightarrow {DM}  = \overrightarrow {DM}  + \overrightarrow {MC}  = \overrightarrow {DC} \)

Mà \(\overrightarrow {AB}  = \overrightarrow {DC} \)(do ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {MB}  - \overrightarrow {MA}  = \overrightarrow {MC}  - \overrightarrow {MD} \) (đpcm)


Các câu hỏi tương tự
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết