Đặt \(\frac{a}{b}\) = \(\frac{c}{d}\) = k ⇒ \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có:
\(\frac{ab}{cd}\) = \(\frac{bk.b}{dk.d}\) = \(\frac{b^2}{d^2}\)
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) = \(\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\) = \(\frac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}\) = \(\frac{b^2}{d^2}\)
⇒ \(\frac{ab}{cd}\) = \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (đpcm)