cho a,b,c dương. Chứng minh \(\frac{1}{2b+c}+\frac{1}{2c+a}+\frac{1}{2a+b}\ge\frac{3}{a+b+c}\)
cho các số thực a,b,c dương chứng minh rằng a+b+c≤\(\frac{1}{2}\left(a^2b+b^2c+c^2a+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
2. Cho a, b > 0. CM: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Áp dụng CM các bđt sau:
a)Cho a, b, c > 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4.\) CM:\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
b)\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{a+b=c}{2}\left(a,b,c>0\right)\)
cho a,b,c> 0 . Cmr:
\(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
cho a,b,c > 0 thỏa mãn ab+bc+ca+abc=2
. TÌm Gtln của : \(\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)
Cho a, b, c dương.
Cmr: \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\)
1) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
2) với \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\) chứng minh \(\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\ge1\)
cho các số thực dương a b c d thỏa \(a^2+b^2+c^2+d^2=4\)
chứng minh \(\left(a+b+c+d-2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{2}\right)\ge9\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=1\) . Cmr:
\(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}+\sqrt{\frac{bc+2a^2}{1+bc-a^2}}+\sqrt{\frac{ca+2b^2}{1+ac-b^2}}\ge2+ab+bc+ca\)