Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Khánh Huyền

1) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

2) với \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\) chứng minh \(\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\ge1\)

Akai Haruma
14 tháng 1 2020 lúc 0:56

Bài 1:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)[a(b+c)+b(c+a)+c(a+b)]\geq (a+b+c)^2\)

\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)$(*)$

Áp dụng BĐT AM-GM dễ thấy: $a^2+b^2+c^2\geq ab+bc+ac$

$\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2.\frac{(a+b+c)^2}{3}}=\frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
Akai Haruma
14 tháng 1 2020 lúc 0:59

Bài 2:

Áp dụng BĐT AM-GM:

\(\frac{a^3}{b(2c+a)}+\frac{b}{3}+\frac{2c+a}{9}\geq 3\sqrt[3]{\frac{a^3}{b(2c+a)}.\frac{b}{3}.\frac{2c+a}{9}}=a\)

\(\frac{b^3}{c(2a+b)}+\frac{c}{3}+\frac{2a+b}{9}\geq b\)

\(\frac{c^3}{a(2b+c)}+\frac{a}{3}+\frac{2b+c}{9}\ge c\)

Cộng theo vế và thu gọn ta có:

\(\frac{a^3}{b(2c+a)}+\frac{b^3}{c(2a+b)}+\frac{c^3}{a(2b+c)}\geq \frac{a+b+c}{3}=\frac{3}{3}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Khách vãng lai đã xóa
Akai Haruma
14 tháng 1 2020 lúc 9:51

Bài 1 cách khác:
Đặt \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

\(P+3=\frac{a+b+c}{b+c}+\frac{b+a+c}{a+c}+\frac{a+b+c}{a+b}=(a+b+c)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)

Áp dụng BĐT AM-GM:

\(a+b+c=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\geq \frac{3}{2}\sqrt[3]{(a+b)(b+c)(c+a)}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq 3\sqrt[3]{\frac{1}{(a+b)(b+c)(c+a)}}\)

$\Rightarrow P+3\geq \frac{9}{2}$

$\Rightarrow P\geq \frac{3}{2}$ (đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nhung Truong
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
oooloo
Xem chi tiết
dbrby
Xem chi tiết
dbrby
Xem chi tiết
Trần Huy tâm
Xem chi tiết
trần trang
Xem chi tiết
Tiến Lăng
Xem chi tiết
Cao Thi Thuy Duong
Xem chi tiết