Ta có:
\(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\)
\(\Rightarrow\left(a+b+c\right)^2-3\left(ab+ac+bc\right)=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\)
\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\) với mọi a và b
\(\left(a-c\right)^2\ge0\) với mọi a và c
\(\left(b-c\right)^2\ge0\) với mọi b và c
Mà \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
Vậy a = b = c ( Đpcm )