Mình nghĩ đề nên cho a,b,c dương nếu không thì từ từ mình suy nghĩ
Đặt \(P=\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\)
Ta có:\(\frac{a-bc}{a+bc}=\frac{a-bc}{a\left(a+b+c\right)+bc}=\frac{a-bc}{\left(a+b\right)\left(a+c\right)}=\frac{\left(a-bc\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\frac{\left(a-bc\right)\left(1-a\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
\(=\frac{a-a^2-bc+abc}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}=\frac{a-a^2-bc+abc}{1-a-b-c+ab+bc+ca-abc}=\frac{a-a^2-bc+abc}{ab+bc+ca-abc}\)
\(\Rightarrow P=\frac{a+b+c-a^2-b^2-c^2-ab-bc-ca+3abc}{ab+bc+ca-abc}\)
\(P=\frac{1-\left(a+b+c\right)^2+ab+bc+ca+3abc}{ab+bc+ca-abc}\)
\(P=\frac{ab+bc+ca+3abc}{ab+bc+ca-abc}=1+\frac{4abc}{ab+bc+ca-abc}\)
Cần cm:\(\frac{4abc}{ab+bc+ca-abc}\le\frac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)\ge9abc\)(đúng theo AM-GM)
"="<=>a=b=c=1/3