\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)
\(\Rightarrow\frac{bc+ac+ab}{abc}=0\)
\(\Rightarrow bc+ca+ab=0\)
\(\Rightarrow2bc+2ac+2ab=0\)
Đặt \(B=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow B=\left(a+b+c\right)^2=1^2=1\) ( áp dụng hằng đẳng thức )
\(\Rightarrow B=a^2+b^2+c^2+0=1\)
\(\Rightarrow A=a^2+b^2+c^2=1-0=1\)
Vậy \(A=1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\frac{bc+ac+ab}{abc}=0\)
=> ac + ab + bc = 0
a2 + b2 + c2
= (a + b + c)2 - 2(ab + ac + bc)
= 12 - 2 . 0
= 1