Áp dụng BĐT cô si cho 2 số không âm
\(b+c\ge2\sqrt{bc}\)
<=>\(\left(b+c\right)^2\ge4bc\) (1)
Áp dụng BĐT cô si cho 2 số không âm
\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)
<=>\(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)
<=>\(1\ge4a\left(b+c\right)\) (2)
nhân (1) với (2) ta đc
\(\left(b+c\right)^2\ge16abc.\left(b+c\right)\)
<=>\(b+c\ge16abc\) (đpcm)
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{matrix}\right.\)