Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
0o0^^^Nhi^^^0o0

Cho a+b+c=1. Chứng minh rằng: b+c\(\ge\)16abc ( a,b,c\(\ge\)0)

hattori heiji
4 tháng 4 2018 lúc 13:26

Áp dụng BĐT cô si cho 2 số không âm

\(b+c\ge2\sqrt{bc}\)

<=>\(\left(b+c\right)^2\ge4bc\) (1)

Áp dụng BĐT cô si cho 2 số không âm

\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\)

<=>\(\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

<=>\(1\ge4a\left(b+c\right)\) (2)

nhân (1) với (2) ta đc

\(\left(b+c\right)^2\ge16abc.\left(b+c\right)\)

<=>\(b+c\ge16abc\) (đpcm)

bach nhac lam
30 tháng 6 2019 lúc 21:40

\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)

\(\Rightarrow b+c\ge4a\left(b+c\right)^2\ge4a\cdot4bc=16abc\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\\a+b+c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=c=\frac{1}{4}\end{matrix}\right.\)


Các câu hỏi tương tự
X Buồn X
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
0o0^^^Nhi^^^0o0
Xem chi tiết
Thanh Thao Vu
Xem chi tiết
Nguyễn Thanh Hiền
Xem chi tiết
poppy Trang
Xem chi tiết
Naruto Uzumaki
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Trung Nguyễn Adc
Xem chi tiết