Cho a,b,c >0. Chứng minh: \(\frac{a^8 +b^8+c^8}{a^3b^3c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Cho a+b+c=1. Chứng minh rằng: b+c\(\ge\)16abc ( a,b,c\(\ge\)0)
Cho ba số a, b, c >0,
Chứng minh rằng: a/b2 +b/c2+c/a2 ≥ 1/a+1/b+1/c
Cho a, b, c > 0 và a + b + c + ab + bc + ca = 6abc. Chứng minh rằng
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) ≥ 3
a) Cho a,b,c >0
Chứng minh: \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\)
b) Cho a,b \(\ge\)1 , chứng minh:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)
Cho a, b, c > 0 thỏa mãn a + b + c = 1. Chứng minh rằng:
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)
1.Giải phương trình sau: [x-2015] + [2x-2016]= x-2017
2. Cho ba số thực a,b,c khác nhau thỏa mãn: \(a+\frac{2020}{b}=b+\frac{2020}{c}=c+\frac{2020}{a}\). Chứng minh rằng \(a^2+b^2+c^2=2020^3\)
3. Cho a,b,c là số dương thỏa mãn a+b+c=9. Chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
4. Chứng minh bất đẳng thức sau vớ a,b,c là các số dương: \(\left(a+b+c\right)\times\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
5. Cho a >0, b >0, c >0. Chứng minh rằng: \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
Bài 5:
a) Cho x>0, y>0 và m, n là hai số thực. Chứng minh rằng\(\frac{m^2}{x}+\frac{n^2}{y}\)≥\(\frac{\left(m+n\right)^2}{x+y}\)
b) Cho a, b, c là ba số dương thỏa mãn abc=1.
Chứng minh rằng \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)≥\(\frac{3}{2}\)