Cho a, b, c > 0 . CMR:
\(\frac{1}{a+b+c}\ge\frac{a^3}{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}+\frac{b^3}{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}+\frac{c^3}{\left(2c^2+a^2\right)\left(2c^2+a^2\right)}\)
1.Cho a,b,c >0. Chứng minh rằng:
\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2^{ }+b^2}\ge3\)2.
Cho x,y,z là các số thực thỏa mãn 2 (y2 + yz + z2) + 3x2= 36. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x + y + z
CHO TAM GIÁC ABC, ĐẶT ĐỘ DÀI 3 CẠNH BC=a, CA=b, AB=c
CHO BIẾT: \(\frac{ab}{b+c}+\frac{bc}{c+a}+\frac{ca}{a+b}=\frac{ca}{b+c}+\frac{ab}{c+a}+\frac{bc}{a+b}\)
A) CM TAM GIÁC ABC CÂN
B) NẾU CHO THÊM: \(c^4+abc\left(a+b\right)=c^2\left(a^2+b^2\right)+\left(c+b\right)\left(c-b\right)bc+\left(c-a\right)\left(c+a\right)ac\) .TÍNH CÁC GÓC CỦA TAM GIÁC ABC
1.cho x+y+z=xyz và xy+yz+zx≠3
cmr: x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)/xy+yz+zx=xyz
2.cmr nếu c^2+2(ab-ac-bc)=0và b≠c,a+b≠c thì \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a-c}{b-c}\)
3. cho a,b,c thỏa mãn abc≠0 và ab+bc+ca=0
tính :P=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Giải phương trình:
\(\frac{x}{\left(a-b\right)\left(a-c\right)}+\frac{x}{\left(b-a\right)\left(b-c\right)}+\frac{x}{\left(c-a\right)\left(c-b\right)}=2\)
Cho 3 số a, b, c thỏa mãn a # -b, b # -c, c # -a.
Chứng minh rằng : \(\dfrac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^2-ab}{\left(c+a\right)\left(c+b\right)}=0\)
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Cho các số thực a, b thỏa mã a + b = 1 và ab khác 0. Tính
\(P=\frac{a}{b^3-1}-\frac{b}{a^3-1}+\frac{2\left(a-b\right)}{a^2b^2+3}\)
giải phương trình:
\(\frac{x-a+1}{x-a}-\frac{x-b+1}{x-b}=\frac{a}{\left(x-a\right)\left(x-b\right)}\left(a;b\right)\) là các hằng số