Cho \(\dfrac{a-\left(c-b\right)}{b-c}+\dfrac{b-\left(a-c\right)}{c-a}+\dfrac{c-\left(b-a\right)}{a-b}=3\)
Chứng minh rằng: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho a,b,c khác 0 thỏa mãn \(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{c}{b}\right)\left(1+\dfrac{a}{c}\right)=8\)
CMR \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}=\dfrac{3}{4}+\dfrac{ab}{\left(a+b\right)\left(b+c\right)}+\dfrac{bc}{\left(b+c\right)\left(c+a\right)}+\dfrac{ca}{\left(c+a\right)\left(a+b\right)}\)
chứng minh
\(2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3=\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)
Chứng minh
\(\dfrac{\left(a-b\right)^2}{ab}+\dfrac{\left(b-c\right)^2}{bc}+\dfrac{\left(c-a\right)^2}{ca}=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Rút gọn biểu thức:
a) \(A=\dfrac{bc}{\left(a-b\right)\left(a-c\right)}+\dfrac{ca}{\left(b-c\right)\left(b-a\right)}+\dfrac{ab}{\left(c-a\right)\left(c-b\right)}\)
b) \(B=\dfrac{\left(x+\dfrac{1}{x}\right)^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{\left(x+\dfrac{1}{x}\right)^3+x^3+\dfrac{1}{x^3}}\)
Cho 3 số thực a, b, c đôi một khác nhau thỏa mãn: \(\dfrac{a}{b-c}+\dfrac{b}{c-a}+\dfrac{c}{a-b}=0\)
CMR: \(\dfrac{a}{\left(b-c\right)^2}+\dfrac{b}{\left(c-a\right)^2}+\dfrac{c}{\left(a-b\right)^2}=0\)
Cho a, b, c là ba số dương thoả mãn abc = 1. Chứng minh rằng: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Cho abc khác 0 ; a+b+c=0 . Hãy rút gọn biểu thức:
\(T=\dfrac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\dfrac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\dfrac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)
Cho a,b,c>0. Chứng minh rằng:\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)