Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Thị Diệu Thúy

Cho a,b,c>0 t/m: ab+bc+ca=3

CMR: \(\dfrac{1}{a^2+b^2+1}\)+\(\dfrac{1}{b^2+c^2+1}\)+\(\dfrac{1}{c^2+a^2+1}\)<=1

Nhã Doanh
8 tháng 8 2018 lúc 15:31

Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Ta có:

\(VT=\)\(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

\(=\dfrac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}+\dfrac{1+1+a^2}{\left(b^2+c^2+1\right)\left(1+1+a^2\right)}+\dfrac{1+1+b^2}{\left(c^2+a^2+1\right)\left(1+1+b^2\right)}\)

Áp dụng BĐT Bunhiacopski cho mẫu số, ta có:

\(\left(a^2+b^2+c^2\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)

\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(b+c+a\right)^2\)

\(\left(c^2+a^2+1\right)\left(1+1+b^2\right)\ge\left(c+a+b\right)^2\)

\(\Rightarrow VT\le\dfrac{1+1+c^2}{\left(a+b+c\right)^2}+\dfrac{1+1+a^2}{\left(b+c+a\right)^2}+\dfrac{1+1+b^2}{\left(c+a+b\right)^2}=\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+ab+bc+ca}{3\left(ab+bc+ca\right)}=\dfrac{6+3}{3.3}=1\)

\("="\Leftrightarrow a=b=c=1\)


Các câu hỏi tương tự
王俊凯
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Dat
Xem chi tiết
dia fic
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
Andromeda Galaxy
Xem chi tiết
Quang Huy Điền
Xem chi tiết
Bùi Đức Anh
Xem chi tiết